simulation_crp.r (867B)
1 require(dplyr) 2 require(ggplot2) 3 require(reshape2) 4 5 source('crp.r') 6 7 design = expand.grid(epochs = 100, n = 1000, a = c(1, 10, 100)) 8 9 simulate = function(epochs, n, a) replicate(epochs, list(crp(n, a))) 10 11 experiment = apply( 12 design 13 , MARGIN = 1 14 , function(row) { simulate(row[1], row[2], row[3]) } 15 ) 16 17 results = melt(experiment, id.vars = 'table') 18 by_concentration = group_by(results, table = table, settings = factor(L1)) 19 20 log_log_plot = 21 ggplot(by_concentration, aes(table, value, fill = settings, colour = settings)) + 22 geom_jitter(width = 0.5, height = 0.45, alpha = 0.2) + 23 scale_x_log10() + scale_y_log10() 24 25 summarised = summarise(by_concentration, customers = mean(value)) 26 27 mean_log_log_plot = 28 ggplot(summarised, aes(table, customers, fill = settings, colour = settings)) + 29 geom_point(alpha = 0.8) + 30 scale_x_log10() + scale_y_log10() 31