sim_fmm_1d_conditional_collapsed.r (1330B)
1 require(ggplot2) 2 require(gridExtra) 3 require(reshape2) 4 5 source('fmm_multivariate_conditional_collapsed.r') 6 7 dimension = 1 8 9 config = list( 10 k = 4 11 , m = dimension 12 , a = 1 13 , l = rep(0, dimension) 14 , b = dimension 15 , w = diag(1, dimension) 16 , n = 50 17 ) 18 19 set.seed(222) 20 21 d = list( 22 as.matrix(replicate(100, rnorm(config$m, 5))) 23 , as.matrix(replicate(100, rnorm(config$m, -5))) 24 , as.matrix(replicate(100, rnorm(config$m, 10))) 25 , as.matrix(replicate(200, rnorm(config$m)))) 26 27 dn = lapply(d, function(j) { data.frame(x = j) }) 28 29 m = melt(dn, id.vars = c('x')) 30 31 set.seed(990909) 32 33 params = inverse_model( 34 config$n, config$k, as.matrix(m[, c('x')]) 35 , config$a 36 , config$l 37 , config$b, config$w 38 ) 39 40 early = data.frame(x = m$x, variable = params$z[1,]) 41 mid = data.frame(x = m$x, variable = params$z[round(config$n * 1 / 2),]) 42 late = data.frame(x = m$x, variable = params$z[config$n - 1,]) 43 44 p_early = 45 ggplot(early, aes(x, colour = factor(variable), fill = factor(variable))) + 46 geom_histogram(alpha = 0.5) 47 48 p_mid = 49 ggplot(mid, aes(x, colour = factor(variable), fill = factor(variable))) + 50 geom_histogram(alpha = 0.5) 51 52 p_late = 53 ggplot(late, aes(x, colour = factor(variable), fill = factor(variable))) + 54 geom_histogram(alpha = 0.5) 55 56 inferred_plots = grid.arrange(p_early, p_mid, p_late, ncol = 3) 57