bnp

Some older Bayesian nonparametrics research.
Log | Files | Refs | README | LICENSE

commit 91462bdb6e14d280a1f89d2d3c4f7d1b873177b1
parent 4cd4be71f3c88b48735906d080d6e6a65cfc5738
Author: Jared Tobin <jared@jtobin.ca>
Date:   Tue, 15 Mar 2016 09:41:05 +1300

Log covariance matries.

Diffstat:
Mfinite-gaussian-mixture/src/fmm_multivariate_conditional.r | 4+---
Mfinite-gaussian-mixture/src/simulation_multivariate_conditional.r | 2+-
2 files changed, 2 insertions(+), 4 deletions(-)

diff --git a/finite-gaussian-mixture/src/fmm_multivariate_conditional.r b/finite-gaussian-mixture/src/fmm_multivariate_conditional.r @@ -106,9 +106,7 @@ inverse_model = function(n, k, y, a, l, r, b, w) { acc$p = rbind(acc$p, params$p) acc$m = mapply(rbind, acc$m, params$m, SIMPLIFY = F) - # FIXME (jtobin): not logging intermediate covariances - # possibly desirable to log eigenvalues - acc$s = params$s + acc$s = c(acc$s, list(params$s)) acc$z = rbind(acc$z, params$z) acc$l = c(acc$l, params$l) } diff --git a/finite-gaussian-mixture/src/simulation_multivariate_conditional.r b/finite-gaussian-mixture/src/simulation_multivariate_conditional.r @@ -41,7 +41,7 @@ dm = melt(lapply(params$m, data.frame), id.vars = c('x', 'y')) py = ggplot(m, aes(x, y)) + geom_point() pp = ggplot(dp, aes(seq_along(value), value, colour = variable)) + - geom_line() + geom_line() + facet_grid(. ~ variable) pm = ggplot(dm, aes(x, y, colour = factor(L1), fill = factor(L1))) + geom_point(alpha = 0.5)