mwc-probability

Sampling function-based probability distributions.
Log | Files | Refs | README | LICENSE

commit 52566ae09ce6d177b9a291f557014800c4a01965
parent 5ba60758e429b385b252b461831eb6bc7fd30145
Author: Jared Tobin <jared@jtobin.ca>
Date:   Sat, 30 Jun 2018 17:44:47 +1200

Clean up README.

* Point to the Haddocks for examples
* Add standard 'please contribute!' message

Diffstat:
MREADME.md | 41+++++++----------------------------------
1 file changed, 7 insertions(+), 34 deletions(-)

diff --git a/README.md b/README.md @@ -13,7 +13,6 @@ This implementation is a thin layer over `mwc-random`, which handles RNG state-passing automatically by using a `PrimMonad` like `IO` or `ST s` under the hood. - Examples -------- @@ -29,46 +28,21 @@ invariant: beta 1 10 >>= binomial 10 * Use do-notation to build complex joint distributions from composable, -local conditionals: + local conditionals: hierarchicalModel = do - [c, d, e, f] <- replicateM 4 $ uniformR (1, 10) + [c, d, e, f] <- replicateM 4 (uniformR (1, 10)) a <- gamma c d b <- gamma e f p <- beta a b n <- uniformR (5, 10) binomial n p +Check out the haddock-generated docs on +[Hackage](https://hackage.haskell.org/package/mwc-probability) for other +examples. +## Etc. -Included probability distributions -------------- - -* Continuous - - * Uniform - * Normal - * Log-Normal - * Exponential - * Inverse Gaussian - * Laplace - * Gamma - * Inverse Gamma - * Weibull - * Chi-squared - * Beta - * Student t - * Pareto - * Dirichlet process - * Symmetric Dirichlet process - -* Discrete +PRs and issues welcome. - * Discrete uniform - * Zipf-Mandelbrot - * Categorical - * Bernoulli - * Binomial - * Negative Binomial - * Multinomial - * Poisson -\ No newline at end of file