mwc-probability

Sampling function-based probability distributions.
Log | Files | Refs | README | LICENSE

commit ee554a967df540afae081c5e2b705d9c39fd7dbf
parent 7a6e7cfd0a55d9b909b74a6ff3f398f536a8d044
Author: Marco Zocca <ocramz@users.noreply.github.com>
Date:   Thu, 10 May 2018 08:25:27 +0200

Merge pull request #13 from ocramz/master

Fix readme rendering
Diffstat:
MREADME.md | 86++++++++++++++++++++++++++++++++++++++++----------------------------------------
1 file changed, 43 insertions(+), 43 deletions(-)

diff --git a/README.md b/README.md @@ -17,58 +17,58 @@ the hood. Examples -------- -1. Transform a distribution's support while leaving its density structure +* Transform a distribution's support while leaving its density structure invariant: - -- uniform over [0, 1] transformed to uniform over [1, 2] - succ <$> uniform + -- uniform over [0, 1] transformed to uniform over [1, 2] + succ <$> uniform -2. Sequence distributions together using bind: +* Sequence distributions together using bind: - -- a beta-binomial composite distribution - beta 1 10 >>= binomial 10 + -- a beta-binomial composite distribution + beta 1 10 >>= binomial 10 -3. Use do-notation to build complex joint distributions from composable, +* Use do-notation to build complex joint distributions from composable, local conditionals: - hierarchicalModel = do - [c, d, e, f] <- replicateM 4 $ uniformR (1, 10) - a <- gamma c d - b <- gamma e f - p <- beta a b - n <- uniformR (5, 10) - binomial n p + hierarchicalModel = do + [c, d, e, f] <- replicateM 4 $ uniformR (1, 10) + a <- gamma c d + b <- gamma e f + p <- beta a b + n <- uniformR (5, 10) + binomial n p Included probability distributions ------------- -## Continuous - -* Uniform -* Normal -* Log-Normal -* Exponential -* Inverse Gaussian -* Laplace -* Gamma -* Inverse Gamma -* Weibull -* Chi-squared -* Beta -* Student t -* Pareto -* Dirichlet process -* Symmetric Dirichlet process - -## Discrete - -* Discrete uniform -* Zipf-Mandelbrot -* Categorical -* Bernoulli -* Binomial -* Negative Binomial -* Multinomial -* Poisson -\ No newline at end of file +* Continuous + + * Uniform + * Normal + * Log-Normal + * Exponential + * Inverse Gaussian + * Laplace + * Gamma + * Inverse Gamma + * Weibull + * Chi-squared + * Beta + * Student t + * Pareto + * Dirichlet process + * Symmetric Dirichlet process + +* Discrete + + * Discrete uniform + * Zipf-Mandelbrot + * Categorical + * Bernoulli + * Binomial + * Negative Binomial + * Multinomial + * Poisson +\ No newline at end of file