commit 06aed8bb02c63a28e754399d8b4eef9352677840
parent f08cb4f9e10b68226fcaae2f3effb954f0aabd61
Author: Marco Zocca <ocramz@users.noreply.github.com>
Date: Tue, 30 Jan 2018 17:48:26 +0100
Merge pull request #10 from ocramz/master
Add negative binomial, add References section
Diffstat:
3 files changed, 20 insertions(+), 3 deletions(-)
diff --git a/CHANGELOG b/CHANGELOG
@@ -1,5 +1,8 @@
# Changelog
+ - 2.0.2 (2018-01-30)
+ * Add negative binomial distribution
+
- 2.0.1 (2018-01-30)
* Add Normal-Gamma and Pareto distributions
diff --git a/mwc-probability.cabal b/mwc-probability.cabal
@@ -1,5 +1,5 @@
name: mwc-probability
-version: 2.0.1
+version: 2.0.2
homepage: http://github.com/jtobin/mwc-probability
license: MIT
license-file: LICENSE
diff --git a/src/System/Random/MWC/Probability.hs b/src/System/Random/MWC/Probability.hs
@@ -53,6 +53,10 @@
--
-- which will be reused throughout all examples.
-- Note: creating a random generator is an expensive operation, so it should be only performed once in the code (usually in the top-level IO action, e.g `main`).
+--
+-- == References
+--
+-- 1) L.Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986. (Made freely available by the author: http://www.nrbook.com/devroye )
module System.Random.MWC.Probability (
@@ -87,6 +91,7 @@ module System.Random.MWC.Probability (
, categorical
, bernoulli
, binomial
+ , negativeBinomial
, multinomial
, poisson
@@ -295,6 +300,16 @@ binomial :: PrimMonad m => Int -> Double -> Prob m Int
binomial n p = fmap (length . filter id) $ replicateM n (bernoulli p)
{-# INLINABLE binomial #-}
+-- | The negative binomial distribution with `n` trials each with "success" probability `p`.
+-- Example X.1.5 in [1].
+--
+-- Note: `n` must be larger than 1 and `p` included between 0 and 1.
+negativeBinomial :: (PrimMonad m, Integral a) => a -> Double -> Prob m Int
+negativeBinomial n p = do
+ y <- gamma (fromIntegral n) ((1-p) / p)
+ poisson y
+{-# INLINABLE negativeBinomial #-}
+
-- | The multinomial distribution.
multinomial :: (Foldable f, PrimMonad m) => Int -> f Double -> Prob m [Int]
multinomial n ps = do
@@ -336,8 +351,7 @@ categorical ps = do
-- | The Zipf-Mandelbrot distribution, generated with the rejection
--- sampling algorithm X.6.1 shown in
--- L.Devroye, Non-Uniform Random Variate Generation.
+-- sampling algorithm X.6.1 shown in [1].
--
-- The parameter should be positive, but values close to 1 should be
-- avoided as they are very computationally intensive. The following